Finitely generated groups with polynomial index growth

نویسندگان

  • László Pyber
  • Dan Segal
چکیده

We prove that a finitely generated soluble residually finite group has polynomial index growth if and only if it is a minimax group. We also show that if a finitely generated group with PIG is residually finite-soluble then it is a linear group. These results apply in particular to boundedly generated groups; they imply that every infinite BG residually finite group has an infinite linear quotient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Proof of Gromov’s Theorem on Groups of Polynomial Growth

We give a proof of Gromov’s theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. The proof does not rely on the Montgomery-ZippinYamabe structure theory of locally compact groups.

متن کامل

Normal Subgroup Growth of Linear Groups: the (G2, F4, E8)-Theorem

Let Γ be a finitely generated residually finite group. Denote by sn(Γ) (resp. tn(Γ)) the number of subgroups (resp. normal subgroups) of Γ of index at most n. In the last two decades the study of the connection between the algebraic structure of Γ and the growth rate of the sequence {sn(Γ)}n=1 has become a very active area of research under the rubric “subgroup growth” (see [L1], [LS] and the r...

متن کامل

On Groups That Have Normal Forms Computable in Logspace Murray Elder, Gillian Elston, and Gretchen Ostheimer

We consider the class of finitely generated groups which have a normal form computable in logspace. We prove that the class of such groups is closed under passing to finite index subgroups, direct products, wreath products, and certain free products and infinite extensions, and includes the solvable Baumslag-Solitar groups, as well as non-residually finite (and hence nonlinear) examples. We def...

متن کامل

On Groups whose Geodesic Growth is Polynomial

This note records some observations concerning geodesic growth functions. If a nilpotent group is not virtually cyclic then it has exponential geodesic growth with respect to all finite generating sets. On the other hand, if a finitely generated group G has an element whose normal closure is abelian and of finite index, then G has a finite generating set with respect to which the geodesic growt...

متن کامل

On the Growth of Groups and Automorphisms

We consider the growth functions βΓ(n) of amalgamated free products Γ = A ∗C B, where A ∼= B are finitely generated, C is free abelian and |A/C| = |A/B| = 2. For every d ∈ N there exist examples with βΓ(n) ' nβA(n). There also exist examples with βΓ(n) ' e. Similar behaviour is exhibited among Dehn functions. For Slava Grigorchuk, in friendship, with great respect. The first purpose of this not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008